A lot of building science is pretty theoretical because, no matter how much research you do, at the end of the job most of the work is hidden in the walls. Unless you come back to do renovations, or worse, get a dreaded “call back” for something gone seriously wrong, you rarely get the opportunity to see how your work performs. I am not talking about cosmetic details like nail holes that don’t get filled or rough edges that didn’t get sanded, but about how well materials hold up to the heat or how well you have managed moisture movement through the walls, either as precipitation working its way in, or the more mysterious way that water vapor works its way out. (or inwards in some climates). This moisture is driven by vapor pressure, which can drive water molecules through most any material given the right humidity and heat differentials— something a sauna has a lot of. I learned about vapor pressure when I realized that my hollow steel yard sculptures were inexplicably filling up with water. My welds are very solid and water-tight but somehow moisture was penetrating the steel, condensing and not getting out. Cutting holes in the bottoms to let trapped water out solved that problem. There’s a bit of molecular science involved here, but suffice it say that vapor pressure is very strong- strong enough that when I throw water on the hot rocks my sauna door pops open as if the löyly has scared a ghost out of hiding. (Read previous post about Insulating Saunas)

Thinking about all of this has left me wondering what is happening in my sauna walls; am I doing a good job? is the insulation holding up? is water getting trapped?

Yesterday I had to do some retrofitting on the first mobile sauna I built in 2013. I exchanged the Scandia gas heater for a wood burner and got to peer into the dark interior of the walls. This is a sauna that has seen heavy and very hot (200°+) usage.
The walls were built with cedar inside and out with only a 1″ layer of foil faced polyioscyanurate foam board in between the studs.

Here is what I found:

There was no damage from trapped moisture and the foam board looked as good as new; the foil facing still shiny!
There was some high-temp fiber fax insulation used around the gas heater; a rodent had gotten into this (despite my filling gaps around the gas line with steel wool) and made a stinky little nest.

So this confirmed my use of the polyisocyanurate board, which has a service temperature of 250°F and my disdain of fiberglass type materials (because rodents love it).

On my desk I have a piece of EXP (expanded polysytrene) foam I pulled out of a failed sauna I was asked to repair. It looks like one of my steel sculptures from my Landform series – a flowing, green landscape (of melted plastic). Its service temp is listed as 150° F. All materials have material data sheets, usually available on the manufacturers web pages. I consult these whenever I am unsure about materials, especially given that the extremes of the sauna are like the extremes NASA engineers have to deal with.
Clearly there is a correlation between science and reality, even if it is happening unseen inside the walls of your sauna. So when choosing materials, listen to the science, learn from observation and don’t just buy the cheapest materials or use only the easiest approach. Consult with the experts. Sometimes there is more to it than meets the eye.

See more building science tips and pics on Instagram @SaunasByRob
Facebook @customsaunas